На правах рукописи

Mary f

МАХМУДОВ ФАРХОД АБДУХОЛИКОВИЧ

СИНТЕЗ, РОСТ МОНОКРИСТАЛЛОВ, СВОЙСТВА НОВЫХ ФАЗ ЦИНТЛЯ НА ОСНОВЕ АНТИМОНИДОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ

02.00.01- Неорганическая химии

Автореферат диссертации на соискание ученой степени кандидата химических наук

Душанбе – 2015

Работа выполнена в лаборатории Геохимии и аналитической химии Института химии имени В.И.Никитина Академии наук Республики Таджикистан

Научный руководитель: Абдусалямова Махсуда Негматуллаевна, доктор химических наук, заслуженный деятель науки и техники Республики Таджикистан

Официальные оппоненты: Умарова Татьяна Мухсиновна, доктор технических наук, начальник Учебно-методического отдела филиала МГУ в городе Душанбе

> **Муслимов Имомали Шоимардонович,** кандидат химических наук, заведующий кафедрой цветных металлов Таджикского Технического университета им. М.С.Осими

Ведущая организация: Таджикский национальный университет, кафедра неорганической химии

Защита состоится «__»___2016 г. в _____часов на заседании диссертационного совета Д 047.003.02 при Институте химии им.В.И.Никитина АН Республики Таджикистан по адресу: 734063, г.Душанбе, ул. Айни, 299/2. Е-mail: gulchera@list.ru

С диссертацией можно ознакомиться в библиотеке Института химии им. В.И. Никитина АН Республики Таджикистан и на сайте Института химии им.В.И.Никитина АН Республики Таджикистан <u>www.chemistry.tj</u>

Автореферат разослан «____» ____2016 г.

Ученый секретарь диссертационного совета, доктор химических наук, профессор

В. Абрика Абулхаев В.Д.

Актуальность работы. Дальнейшее развитие современных областей науки и техники в значительной степени зависит от решения одной из основных задач физики и химии полупроводников - получения новых полупроводниковых материалов, обладающих самыми разнообразными электрическими, оптическими, тепловыми, механическими, химическими свойствами. В связи с этим в последние годы значительно возрос интерес к соединениям d-, f-переходных металлов с элементами IV, V, VI групп Периодической системы Д.И. Менделеева.

В этом аспекте весьма перспективными материалами являются различные соединения и их твердые растворы редкоземельных элементов (РЗЭ): бориды, нитриды, халькогениды, пниктиды.

Особое место в полупроводниковом материаловедении занимают соединения и твердые растворы РЗЭ, которые являются фазами Цинтля.

Диссертационная работа посвящена решению актуальной задачи современной химии полупроводников - получению и всестороннему исследованию свойств Yb₁₄MnSb₁₁ и его твердых растворов в системах

 $Yb_{14-x}Ln_xMnSb_{11}$, где Ln - Tb, Dy, Ho, Er, Tm, Lu , а также в системах с теллуром типа $Yb_{14}MnSb_{11-x}Te_x$.

Цель и задачи работы. Определение оптимальных условий синтеза, роста монокристаллов и исследование свойств новых материалов на основе антимонидов редкоземельных элементов, обладающих уникальными термическими, тепловыми, электрическими и магнитными свойствами

Основные положения, выносимые на защиту:

- условия синтеза и выращивания монокристаллов твердых растворов типа $Yb_{14-x}Ln_xMnSb_{11}$ и типа $Yb_{14}MnSb_{11-x}Te_x$;

- результаты микрозондового и рентгеноструктурного анализов, тип кристаллической решетки, параметры решеток и их зависимость от состава, плотности рентгеновской и экспериментальной;

- определение процесса плавления, термического расширения; рассчитанные температуры Дебая;

- результаты исследования процесса окисления полученных твердых растворов - величины истинной скорости окисления и кажущейся энергии активации;

- результаты калориметрии растворения по определению энтальпий растворения полученных кристаллов;

- теплофизические, электрические и магнитные свойства твердых растворов $Yb_{14-x}Tm_xMnSb_{11}$ и $Yb_{14}MnSb_{11-x}Te_x$.

Поставленная цель достигнута решением следующих задач:

1. Разработан метод и определены оптимальные условия синтеза и роста монокристаллов твердых растворов, которые охарактеризованы рентгеноструктурным и микрозондовым методами.

- 2. Найдены температуры плавления, определены коэффициенты термического расширения, рассчитаны температуры Дебая полученных материалов.
- 3. Изучены процессы окисления твердых растворов кислородом воздуха. Найдена зависимость параметров окисления от состава твердых растворов.
- 4. Методом калориметрии растворения твердых растворов определены значения энтальпии растворения твердых растворов исследуемых систем.
- 5. Для систем Yb_{14-x}Tm_xMnSb₁₁ и Yb₁₄MnSb_{11-x}Te_x измерены электрические, магнитные, тепловые свойства. Эти исследования проведены в Департаменте химии Калифорнийского университета, Дэвис, США

Научная новизна

1. Впервые получены 32 твердых растворов типа $Yb_{14-x}Ln_xMnSb_{11}$ и 5 типа $Yb_{14}Mn$ $Sb_{11-x}Te_x$, которые кристаллизуются в тетрагональной структуре, найдены параметры решетки, рентгеновские и экспериментальные плотности. Методом микрозондирования установлено, что в кристаллическую структуру $Yb_{14}MnSb_{11}$ входит только х ≈ 0.46 -0.50 РЗЭ и теллура х ≈ 0.12 -0.22, что было подтверждено исследованием комплекса свойств.

2. Исследован процесс плавления синтезированных кристаллов; термическим методом показано, что все полученные материалы плавятся при высоких температурах.

3. Изучено термическое расширение, найдены коэффициенты термического расширения и температуры Дебая полученных твердых многокомпонентных систем.

4. Определены величины истинной скорости окисления и кажущейся энергии активации $Yb_{14}MnSb_{11}$ и твердых растворов $Yb_{14-x}Ln_xMnSb_{11}$ и $Yb_{14}MnSb_{11-x}Te_x$.

5. Методом калориметрии растворения исследован процесс растворения полученных материалов в растворе соляной кислоты, найдены теплоты растворения.

6. Измерены электрические, магнитные, тепловые свойства

 $Yb_{14-x}Tm_xMnSb_{11}$ и $Yb_{14}MnSb_{11-x}Te_x$. Исследованные свойства показали, что твердые растворы, также как соединение $Yb_{14}MnSb_{11}$, относятся к фазам Цинтля и являются перспективными термоэлектрическими материалами. Допинирование теллуром способствует увеличению коэффициента **zT** на $\approx 20\%$ по сравнению с исходным $Yb_{14}MnSb_{11}$.

7. Полученные сведения расширяют общие понятия фаз Цинтля, которые являются связующим звеном между интерметаллидами и ионными соединениями.

Практическая значимость работы:

Практическое применение этих новых материалов - использование в установках для перевода тепловой энергии в электрическую и передача этой энергии на большие расстояния. Благодаря легированию теллуром и получению твердых растворов произошло повышение коэффициента добротности zT= 1,2 – 1,3 при 1200 K.

Проводятся исследования в лаборатории Jet Propulsion laboratory для применения их в электрических генераторах.(Калифорнийский университет, Дэвис, США).

Полученные данные по физическим и химическим свойствам являются справочными данными и пополнят банк термодинамических величин новыми данными по полупроводниковому материаловедению. Полученные данные могут быть использованы при чтении курса по полупроводниковому материаловедению.

Вклад автора заключается в нахождении и применении экспериментальных и расчетных методов решения поставленных задач и достижения цели работы, в обработке, анализе и обобщении полученных результатов и их публикации, формулировке и составлении основных положений и выводов диссертации.

Апробация. Основные результаты обсуждались на: The ninth Asian Thermophysical properties conference (Beijing, China, 2010); X International conference on crystals chemistry of intermetallic compounds(IMC-X)(Lviv, 2010); IMC-XII(Lviv,2013); 26th Rare Earth Research conference (RERC) (Santa Fe, New Mexico,2011);19 European conference on Thermophysical properties (Thessalonk, 2011); International Conference on Chemical Thermodynamics (ICCT 2012) Búzios, Rio de Janeiro, Brazil,2012); 10th WSEAS International conference on Heat Transfer, Thermal Engineering and Environment (THE'12), (Istanbul 2012); Conference of Chemical Thermodynamics (ICCT) and the South African Institute of Chemical Engineers (SAIChE) (Durban, South Africa 2014); XVIII Международной конференции «Химическая термодинамика в России», (Самара, 2012); Республиканской конференции «Комплексообразование в растворах» (Душанбе,2012г); Республиканской конференции «Проблемы химии»(Душанбе,2010): координационной современной Девятой Международной теплофизической школе(Душанбе,2014).

Публикации. Результаты работы отражены в 23 научных публикациях, из которых 6 статей в журналах, рекомендованных ВАК Министерства образования и науки Российской Федерации. В научных журналах США (2), в материалах научных конференций различного уровня (15).

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, общих выводов и списка использованной литературы. Работа изложена на 119 страницах компьютерного набора, иллюстрирована 51 рисунками и содержит 32 таблицы. Список литературы включает 165 наименований. Во введении изложены актуальность данной работы, ее цель и научная новизна, практическая значимость, раскрыта структура диссертации.

В первой главе приведены сведения о диаграммах состояния, кристаллических структурах, свойствах антимонидов редкоземельных элементов, о фазах Цинтля и термоэлектрических материалах.

Во второй главе описаны методы синтеза, роста монокристаллов иссле-дованных материалов, аппаратура исследований.

В третьей главе полученные кристаллы были охарактеризованы рентгеноструктурным и микрозондовым методами. Приведены параметры кристаллических решеток, рентгеновская и экспериментальная плотности. Проведено исследованию термодинамических, термических свойств Yb₁₄. MnSb₁₁, Yb_{14-x}Ln_xMnSb₁₁, Yb₁₄MnSb_{11-x}Te_x, изучена кинетика окисления синтезированных веществ.

В четвертой главе приведены экспериментальные данные по электрическим, магнитным, тепловым свойствам монокристаллов Yb_{14-x}Tm_xMnSb₁₁ и Yb₁₄MnSb_{11-x}Te_x, проведенных в лаборатории Калифорнийского университета.

2. ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 2.1. Синтез и рост монокристаллов

2.1.1. Исследование процесса взаимодействия элементов при синтезе

Для синтеза и получения кристаллов были использованы бидистилляты РЗЭ, сурьма, теллур – полупроводниковой чистоты, и марганец марки Aldrich (99.99%)

Были найдены условия синтеза методом порошковой металлургии соединений и твердых растворов. Изучен процесс взаимодействия элементов при получении соединений и твердых растворов в системах Yb-Mn-Sb, Yb-P3Э-Mn-Sb методом ДTA.

Для этого смесь элементов помещали в тигель из стеклоуглерода, который помещали в кварцевую ампулу, закрывали пробкой с входом и выходом для инертного газа (использовали аргон марки в.ч.). После продувки аргоном кварцевую ампулу устанавливали в печь и включали нагрев; скорость потока аргона контролировалась на выходе инертного газа через барботёр по пузырькам, устанавливался минимальный расход аргона. Скорость нагрева обычно порядка 10-20°С/мин. По результатам ДТА начало взаимодействия смеси начинается с 570°С и сопровождается сильным экзоэффектом.

2.1.2. Рост кристаллов

Монокристаллы были получены методом раствор-расплав или флакс методом, используя в качестве растворителя - олово.

Состав шихты:

 $Yb_{14}Mn_6Sb_{11}Sn_{86}$, $Yb_{14-x}Ln_xMn_6Sb_{11}Sn_{86}$, $Yb_{14-}Mn_6Sb_{11-x}Te_xSn_{86}$.

Процесс проводили в стеклографитовых тиглях. Элементы разделены на слои: сурьма – марганец – РЗЭ – иттербий - олово и сверху кладут

немного кварцевой ваты, которая при центрифугировании играет роль фильтра. Тигель помещают в кварцевую ампулу, откачивают, заполняют аргоном и запаивают. Запаянную кварцевую ампулу помещают в печь и нагревают до 1000°С с выдержкой при этой температуре в течение 6 час. Охлаждение до 700°С ведут со скоростью 2°/час. При 700°С ампулу вынимают из печи и центрифугируют в течение 5мин. Отделяют кристаллы в сухом ящике. Были получены монокристаллы твердых растворов Tb, Dy, Ho,Er, Tm, Lu типа Yb_{14-x}Ln_xMnSb₁₁ и с теллуром $Yb_{14}MnSb_{11}$ c типа Yb₁₄MnSb_{11-х} Te_x При исследовании свойств из образцов отбирали 10-15 кристаллов с типичным для этого образца размером и внешним видом. Для этих кристаллов методом микробюретки определяли плотность с высокой точностью, после чего их разделяли на порции и определяли в микрозондирования, каждой порции состав либо проводили рентгеноструктурные исследования.

2.1.3. Получение компактных образцов

Для измерения термического расширения компактные образцы получали прессованием порошков кристаллов под давлением 147.10⁵Па и спеканием при температуре 0.7 Тпл. образцов в атмосфере аргона. Для измерения термоэлектрических свойств уплотнение полученного порошка было выполнено под аргоном в одноосевом горячем прессе при помощи графитовых дисков с высокой плотностью при температуре между 1000 и 1200°С и при давлении между 50 и 150.10⁵ Па. Плотность (из массы и объема образца) прессованных образцов составляла 95% от теоретической плотности.

2.2. Методы характеризации кристаллов и исследования их свойств

Рентгеноструктурные исследования монокристаллов образцов проведены на аппаратах TUR-M62 с гониометром HCG-3, Philips PW1830 (R=192 мм, CuKα-излучение, Ni-фильтр).

Параметры решеток также определяли на монокристаллических образцах, размерами до 0.3 мм, получаемых в виде хорошо ограненного скола больших по размеру кристаллов. Здесь использовали монокристаллический дифрактометр Bruker X8APEX (МоКα- излучение, графитовый монохроматор, двухкоординатный ССD).

Микрозондовый анализ. Количественный состав кристаллов с размером ≥1x1x1 мм² выполнен микрозондовым анализом на микроанализаторе Camera Jeol Superprobe JXA -8100(JEOL (Japan). Образцы для съемки специально готовили: их помещали в закрепляющий наполнитель держателя И полировали специальным составом с целью получения плоскопараллельной геометрии образцов, полированную и чистую поверхность. В качестве стандартов сравнения были использованы для Mn - Mn-гранат (GRAN-25), для Yb и P3Э это были фосфаты LnPO₄, для Sb - соединение CuSbS₂, металлический теллур - для теллура. На олово также проведен анализ, используя в качестве стандарта его оксид SnO₂. При съемке необходимая интенсивность полезных сигналов достигалась временной выдержкой в10 сек.

Измерения термического расширения проводили на цилиндрических образцах диаметром 4 мм, длиной 10-13 мм в интервале 25-750°С на высокотемпературном дилатометре.

Кинетика окисления исследовалась с использованием метода непрерывного взвешивания образцов.

Калориметрические исследования проводили в герметичном калориметре растворения.

Определение температур плавления проводили на установке под давлением гелия.

Физические свойства. Электропроводность, теплопроводность, термо-эдс, магнитные свойства для Yb_{14-x}Tm_xMnSb₁₁ и Yb₁₄MnSb_{11-x}Te_x были исследованы в Калифорнийском университете.

2.2.1. Рентгенофазовый анализ полученных образцов

Рентгенофазовый анализ показал, что все образцы однофазные. Для примера приведено несколько дифрактограмм на рисунке 1.

Рисунок 1- Дифрактограммы образцов $Yb_{13,3}Tm_{0.7}MnSb_{11}$ (a) и $Yb_{13,7}Tm_{0.3}MnSb_{11}$ (б).

Микрозондовый анализ показал наличие небольшого количества олова и некоторых других фаз, но общее количество примесей составляет около 1%.

Для примера (табл. 1) приведены составы для твердых растворов с тулием, на которых исследовали электрические и магнитные свойства.

Рисунок 2- Микропробный анализ твердых растворов $Yb_{14-x}Tm_xMnSb_{11}$ (x=0.05-0.4).

N	Ликрозондовыи	состав твер;	дых расте	воров У b _{14-х}	$1 \text{ m}_{x} \text{MnSb}_{11}$ (X	K=0.05-0.4)

v		Атомн	ые %		Полученны	Электронно-микрозондовый
Х	Yb	Tm	Mn	Sb	й х	состав
0.05	53.0(3)	0.30(2)	3.92(2)	42.8(3)	0.08	$Yb_{13.78(8)}Tm_{0.08(1)}Mn_{1.02(1)}Sb_{11.12(8)}$
0.1	52.7(1)	0.6(1)	3.95(3)	42.7(2)	0.15	$Yb_{13.71(4)}Tm_{0.15(3)}Mn_{1.03(1)}Sb_{11.11(6)}$
0.2	52.0(3)	1.1(1)	3.87(3)	43.0(2)	0.29	$Yb_{13.53(6)}Tm_{0.29(3)}Mn_{1.01(1)}Sb_{11.18(5)}$
0.3	50.9(1)	1.74(2)	3.84(2)	43.5(1)	0.45	$Yb_{13.24(2)}Tm_{0.45(5)}Mn_{1.00(5)}Sb_{11.31(2)}$
0.4	51.3(1)	1.76(2)	3.89(1)	43.1(1)	0.46	$Yb_{13.32(2)}Tm_{0.46(1)}Mn_{1.01(1)}Sb_{11.21(2)}$

Составы образцов, значения параметров решетки, плотности рентгеновская и экспериментальная приведены в таблице 2.

При получении твердых растворов типа $Yb_{14}MnSb_{11-4}Te_x$ был проведен рентгеноструктурный анализ кристаллов. Данные РФА показали, что все образцы с теллуром содержат одну кристаллическую фазу, изоструктурную с $Yb_{14}MnSb_{11}$. Вид дифрактограмм образцов одинаковый, и дифрактограмма образца $Yb_{14}MnSb_{10.6}Te_{0.4}$ представлен на рисунке 3.

Таблица 2

Значения параметров и плотности полученных веществ							
Составы образцов	Параметры р	ешеток, нм	Плотность,	кг/м ³ ·10 ⁻³			
	a	с	эксперимен.	рентгенов.			
Yb ₁₄ MnSb ₁₁	1.662(2)	2.201(4)	8.28	8.29			
Yb _{13.9} Tb _{0.1} MnSb ₁₁	1.6618(4)	2.2008(1)	8.26	8.29			
$Yb_{13.7}Tb_{0.3}MnSb_{11}$	1.6623(7)	2.2022(1)	8.25	8.25			
$Yb_{13.5}Tb_{0.5}MnSb_{11}$	1.6635(3)	2.2042(4)	8.27	8.32			
$Yb_{13.3}Tb_{0.7}MnSb_{11}$	1.6625(5)	2.2027(8)	8.31	8.23			
$Yb_{13.1}Tb_{0.9}MnSb_{11}$	1.6639(4)	2.2054(7)	8.35	8.10			
$Yb_{13.9}Dy_{0.1}MnSb_{11}$	1.6618(8)	2.1999(1)	8.30	8.38			
Yb _{13.7} Dy _{0.3} MnSb ₁₁	1.6619(8)	2.2021(1)	8.32	8.35			
Yb _{13.5} Dy _{0.5} MnSb ₁₁	1.6622(8)	2.2022(1)	8.36	8.30			
Yb _{13.3} Dy _{0.7} MnSb ₁₁	1.6623(8)	1.6623(1)	8.35	8.29			
$Yb_{13.1}Dy_{0.9}MnSb_{11}$	1.6635(8)	2.2042(1)	8.37	8.37			
Yb _{13.9} Ho _{0.1} MnSb ₁₁	1.66228(4)	2.2015 (1)	8.30	8.32			
Yb _{13.7} Ho _{0.3} MnSb ₁₁	1.66204(4	2.20251(8)	8.29	8.32			
Yb _{13.5} Ho _{0.5} MnSb ₁₁	1.66249(4)	2.20337(9)	8.25	8.31			
Yb _{13.3} Ho _{0.7} MnSb ₁₁	1.66303(7)	2.2034(1)	8.28	8.30			
Yb _{13.1} Ho _{0.9} MnSb ₁₁	1.66263(7	2.2037(2)	8.31	8.30			
$Yb_{13.9}Er_{0.1}MnSb_{11}$	1.6636(8)	2.2039(11)	-	-			
$Yb_{13.7}Er_{0.3}MnSb_{11}$	1.6632(8)	2.2040(11)	-	-			
$Yb_{13.5}Er_{0.5}MnSb_{11}$	1.6636(8)	2.2053(11)	-	-			
$Yb_{13.3}Er_{0.7}MnSb_{11}$	1.6640(8)	2.2025(11)	-	-			
Yb _{13.7} Tm _{0.3} MnSb ₁₁	1.664(9)	2.2041(8)	8.34	8.316			
	16.6161(3) *	22.0093(5)*					
$Yb_{13.6}Tm_{0.4}MnSb_{11}$	1.65881(6)*	2.19452*	-	8.393*			
$Yb_{13.5}Tm_{0.5}MnSb_{11}$	1.6616(6)	2.2021(9)	8.28	8.296			
	1.66141(4)*	2.20144(6)*					
$Yb_{13.3}Tm_{0.7}MnSb_{11}$	1.663(5)	2.203(4)	-	-			
	1.66138(3)*	2.20166(4)*					
$Yb_{13.1}Tm_{0.9}MnSb_{11}$	1.66113(4)*	2.20146(6)*	-	-			
$Yb_{13.9}Lu_{0.1}MnSb_{11}$	1.6610(10)	2.1992(10)	8.28	8.35			
$Yb_{13.7}Lu_{0.3}MnSb_{11}$	1.6606(10)	2.2004(10	8.30	8.35			
Yb _{13.5} Lu _{0.5} MnSb ₁₁	1.6604(10)	2.2004(10)	8.29	8.36			
Yb _{13.3} Lu _{0.7} MnSb ₁₁	1.6601(10)	2.2012(10)	8.30	8.36			
$Yb_{13.1}Lu_{0.9}MnSb_{11}$	1.6597(10)	2.2007(10)	8.33	8.36			

31

* данные, полученные в Калифорнийском университете.

Рисунок 3- Дифрактограмма Yb₁₄MnSb_{10.6}Te_{0.4}. Полученные значения параметров решетки и плотности приведены в таблине 3.

Таблица 3

Состав образцов	Параметры решеток, нм		Параметры решеток, нм Плотнос кг/м ³ ·10		юсть, ⁵ ·10 ⁻³	
	а	экспер.	рентген.			
$Yb_{14}MnSb_{10.8}Te_{0,2}$	16.614(7)	21.995(9)	8.32	8.284		
$Yb_{14}MnSb_{10.6}Te_{0,4}$	16.616(7)	21.993(9)	8.28	8.304		
$Yb_{14}MnSb_{10.4}Te_{0,6}$	16.618(7)	21.999(9)	8.23	8.284		
$Yb_{14}MnSb_{10.2}Te_{0.8}$	16.619(7)	22.008(9)	8.21	8.28		

Параметры решеток и плотности Уb₁₄MnSb₁₁ "Te₂

Микрозондовый анализ показал, что теллур замещает сурьму в кристаллической решетке Yb₁₄MnSb₁₁ незначительно.

Микрозондовый анализ таблеток после горячего прессования показали средние формулы: Yb_{13.72}Mn_{1.08}Sb_{11.13}Te_{0.07} x=0.2; для состава Yb_{13.76}Mn_{1.11}Sb_{10.96}Te_{0.16} для состава x=0.4 и Yb_{13.76}Mn_{1.10}Sb_{10.95}Te_{0.19} для состава x= 0.8. На этих таблетках, которые были получены из порошков кристаллов, полученных в Институте химии, в США, были измерены все электрические, магнитные и тепловые свойства исследуемых образцов.

2.2.2. Определение термических характеристик

Термический анализ Yb₁₄MnSb₁₁ и твердых растворов показал, что все синтезированные материалы плавятся при высоких температурах. При допинировании РЗЭ температуры плавления всех твердых растворов увеличиваются по сравнению с исходным соединением до определенного состава Х≈0.5

Термическое расширение, исследованное в широком интервале температур, с ростом температуры имеет прямолинейный характер (рис. 4).

Рисунок 4- Зависимость относительного удлинения от температуры: (a) $1 - Yb_{13.5}Tm_{0.5}MnSb_{11}$; 2 - $Yb_{13.3}Tm_{0.7}MnSb_{11}$; 3 - $Yb_{13.5}Tm_{0.5}MnSb_{11}$. (б) 1- $Yb_{14}MnSb_{10.6}Te_{0.4}$; 2.- $Yb_{14}MnSb_{10.4}Te_{0.6}$.

Функция $\Delta l/l_0$ - прямолинейна для всех синтезированных веществ, что указывает на постоянство коэффициента термического расширения *a* в данной области температур.

Коэффициенты термического расширения (КТР), найденные по тангенсу угла наклона, с некоторым разбросом имеют скачок при составах х=0.45-0.6 в зависимости от допинирующего РЗЭ. При допинировании РЗЭ и теллуром коэффициент термического расширения увеличивается за исключением твердых растворов с тербием.

Для получения информации о прочности химической связи и используя коэффициенты термического расширения были рассчитаны характеристические температуры Дебая.

Основные термические и упруго-динамические характеристики приведены в таблицах 4 и 5.

Коэффициенты термического расширения и температуры Дебая Ур₁₄ "Ln"MnSb₁₁

Вещества	α·10 ⁻⁶ ,K ⁻¹	θD,K					
$Yb_{14}MnSb_{11}$	13	167					
Yb 13.9 Ho 0.1 MnSb11	16.9	146					
Yb 13.7 Ho 0.3 MnSb11	17.6	143					
Yb 13.5 Ho 0.5 MnSb11	20.8	131					
Yb 13.3 Ho 0.7 MnSb11	17.1	145					
Yb 13.1 Ho 0.9 MnSb11	19.2	136					
Yb _{13.9} Lu _{0.1} MnSb 11	17.3	145					
$Yb_{13.7}Lu_{0.3}MnSb_{11}$	16.0	150					
Yb _{13.5} Lu _{0.5} MnSb 11	22	128					
$Yb_{13.3}Lu_{0.7}MnSb_{11}$	15	155					
Yb _{13.1} Lu _{0.9} MnSb ₁₁	17.6	146					

Таблица 5

Коэффициенты термического расширения и температуры Дебая

Состав образцов	Коэффициент	Температура
	термического	Дебая, ӨD, К
	расширения, α.10 ⁶ ,град. ⁻¹	
$Yb_{14}MnSb_{11}$	13	167
$Yb_{14}MnSb_{10.8}Te_{0.2}$	15	156
$Yb_{14}MnSb_{10.6}Te_{0.4}$	19.9	134
Yb14MnSb10.4Te0.6	23.7	122
Yb14MnSb10.2Te0.8	23.7	121
Yb _{13.9} Tb _{0.1} MnSb ₁₁	12.8	168
Yb 13.5 Tb 0.5 MnSb 11	11.3	179
Yb _{13.3} Tb _{0.7} MnSb ₁₁	15.0	156
$Yb_{13.1} Tb_{0.9} MnSb_{11}$	16.7	148
$Yb_{13.7} Tm_{0.3} MnSb_{11}$	15	156
Yb _{13.5} Tm _{0.5} MnSb ₁₁	15	155.6
$Yb_{13.3} Tm_{0.7} MnSb_{11}$	14	161

2.2.3 Исследование кинетики окисления

Во всех образцах с ростом температуры скорость окисления возрастает. Кривые окисления имеют параболический вид с интенсивной скоростью окисления в начальный период. На рисунке 5 приведены кинетические кривые окисления Yb₁₄MnSb₁₁ и твердых растворов Yb₁₄MnSb_{11-x} Te_x.

По кинетическим кривым, построенным по изменению массы образца в зависимости от времени, были рассчитаны скорости окисления при каждой температуре. По прямой зависимости lgK- 1/T была определена кажущаяся энергия активации.

Соединение Yb₁₄MnSb₁₁ характеризуется максимальным значением скорости окисления при замещении части иттербия Dy, Er,Tm, Lu скорость окисления уменьшается, а замещение иттербия тербием и гольмием

увеличивает скорость окисления. Кинетические кривые окисления исследованных твердых растворов показывают, что при высоких температурах (873-973 К) окисление протекает в течение первых 10-15 мин. по линейному закону, затем наблюдается резкое торможение процесса и отмечается максимальное приращение веса. При 773 К кривые окисления характеризуются плавным приращением веса и к 25-35мин процесс прекращается.

Рисунок 5- Кинетические кривые окисления: (a) $Yb_{14}MnSb_{11}$ и (б) $Yb_{14}MnSb_{10.6}Te_{0.4}$.

Эта закономерность подтверждается и зависимостью lgK от 1/Т и изохорами окисления всех составов. При составах X=0.5-0.6 почти все твердые растворы претерпевают изломы в соответствующих характеристиках (табл. 6, 7).

Таблица 6

Соединения	Температура	Скорость	Кажущаяся			
	окисления, К	окисления, К ¹⁰⁻⁴	энергия			
		Кг/м ² · сек	активации,			
			кДж/моль			
	773	3.78	<u> </u>			
$Yb_{14}MnSb_{11}$	873	4.16	00.19			
	973	4.86				
	773	1.54				
$Yb_{13,7}Tm_{0.3}MnSb_{11}$	873	2.01	117.45			
	973	2.83				
Vh Tax Mach	773	1.57	00.49			
$10_{13.5}111_{0.5}11150_{11}$	873	1.96	99.48			
	773	1.79	1575			
$Yb_{13,3}Tm_{0.7}MnSb_{11}$	873	2.17	137.5			
	973	3.33				

Кинетические и энергетические парам	етры процесса окисления
Yb ₁₄ MnSb ₁₁ и твердых растворов У	$Yb_{14-x}Tm_xMnSb_{11}$

$1 O_{14-x} L u_x WIIS O_{11}$							
Состав сплавов	Температура	Скорость окисления,	Кажущаяся				
	окисления, К	К*10 ⁻⁴ , Кг/м ² *сек	энергия				
			активации,				
			кДж/моль				
$Yb_{13,9}Lu_{0,1}MnSb_{11}$	773	1.67	127.49				
	873	2.36					
	973	3.75					
Yb _{13,7} Lu _{0,3} MnSb ₁₁	773	1.98	103.2				
	873	2.89					
	973	3.73					
Yb _{13,5} Lu _{0,5} MnSb ₁₁	773	2.27	91.24				
	873	3.54					
	973	4.04					
Yb _{13,3} Lu _{0,7} MnSb ₁₁	773	2.71	76.49				
	873	3.36					
	973	4.58					
Yb _{13,1} Lu _{0,9} MnSb ₁₁	773	2.28	86.94				
	873	2.91					
	973	3.47					

Кинетические и энергетические параметры процесса окисления Уb₁₄ "Lu"MnSb₁₁

2.2.4. Калориметрическое определение энтальпий растворения и образования Yb₁₄MnSb₁₁ и твердых растворов

Было проведено калориметрическое исследование синтезированных веществ с целью определения энтальпии растворения. Процесс растворения был проведен в водных растворах азотной и соляной кислот, в 0.5M растворе Br₂.

Полное растворение веществ с необходимой скоростью в течение 5-7 минут достигается при температуре 313 К.

Условия и результаты исследования по определению энтальпии растворения соединения Yb₁₄MnSb₁₁ и некоторых твердых растворов приведены в таблицах 8-11.

Таблица 8

seneral in a single seneral seneral in the seneral s							
Состав	Macca	Молярная	Теплота	Энтальпия	Среднее		
образца	образца,	масса,	растворения	растворения	значение,		
	г.	г/моль	образца, Дж	(∆н <i>Soℓ</i>), кДж/моль	кДж/моль		
Yb ₁₄ MnSb ₁₁	0.1012	146.79	2.397	3.52	3.59 ± 0.11		
	0.2008		4.825	3.54			
	0.3011		7.573	3.70			
	0.2132		5.212	3.58			

Условия и энтальпия растворения сплава тройной системы Yb₁₄MnSb₁₁

	1110010111111	paerzepen	пі теердені р		
Состав	Macca	Молярная	Теплота	Энтальпия	Среднее
образца	образца,	масса,	растворения	растворения	значение,
	Г	г/моль	образца, Дж	(∆Н <i>Sol</i>), кДж/моль	кДж/моль
Yb _{13,9} Lu _{0,1} MnSb ₁₁	0.0501	148.805	1.821	Эксперимент	5.28 ± 0.07
	0.0750		2.684	5.35	
	0.1000		3.578	5.25	
				5.25	
Yb _{13,7} Lu _{0,3} MnSb ₁₁	0.0500	146.81	1.502	4.41	4.48 ± 0.15
- , ,-	0.0750		2.364	4.63	
	0.1000		3.003	4.41	
Yb _{13,5} Lu _{0,5} MnSb ₁₁	0.0500	146.84	1.310	3.85	3.66 ± 0.19
	0.0750		1.853	3.63	
	0.1000		2.396	3.52	
Yb13,3Lu0,7MnSb11	0.0500	146.85	1.390	3.89	4.09 ± 0.3
	0.0750		2.269	4.44	
	0.1000		2.716	3.99	
Yb _{13,1} Lu _{0,9} MnSb ₁₁	0.0500	146.87	1.629	4.79	4.57 ± 0.3
	0.0750		2.141	4.19	
	0.1000		3.227	4.74	

Условия и энтальпия растворения твердых растворов Yb_{14-x}LuMnSb₁₁

Таблица 10

Условия и энтальпия растворения твердых растворов систем Уb_{14 х}Tm₂MnSb₁₁

		1012			
Состав	Macca	Молярная	Теплота	Энтальпия	Среднее
образца	образца,	масса,	растворения	растворения,	значение,
	Г	г/моль	образца, Дж	кДж/моль)	кДж/моль
Yb _{13,9} Tm _{0,1} MnSb ₁₁	0.1000	146.78	2.908	Эксперимент	4.05 ± 0.2
	0.2000		5.304	4.27	
	0.3000		8.148	3.89	
				3.99	
Yb _{13,7} Tm _{0,3} MnSb ₁₁	0.1000	146.74	2.460	3.61	3.45 ± 0.2
	0.2000		4.793	3.52	
	0.3000		6.209	3.23	
Yb _{13,5} Tm _{0,5} MnSb ₁₁	0.0500	146.72	1.084	3.42	3.52 ± 0.3
	0.0750		1.988	3.88	
	0.1000		2.097	3.25	
Yb _{13,3} Tm _{0,7} MnSb ₁₁	0.0500	146.69	1.374	4.04	4.29 ± 0.3
	0.0750		2.320	4.61	
	0.1000		2.876	4.22	

Состав образца	Масса образца, г	Молярная масса, г/моль	Теплота растворения образца, Дж.	Энтальпия растворения, kДж./моль	Среднее значение кДж/моль
Yb ₁₄ MnSb1 _{0.8} Te _{0.2}	0.0050 0.0075 0.9100	146.85	2.556 3.675 4.857	7.5066 7.1953 7.1320	7.2780
Yb ₁₄ MnSb _{10.6} Te _{0.4}	0.0050 0.0075 0.0100	146.89	3.0033 4.3456 5.8155	8.8228 8.5108 8.5421	8.628
Yb ₁₄ MnSb _{10.4} Te _{0.6}	0.0050 0.0075 0.0100	146.93	2.1728 3.3230 4.6330	6.3850 6.5098 6.8072	6.5673
Yb ₁₄ MnSb _{1-x} Te _x	0.0050 0.0075 0.0100	146.98	2.3004 3.4505 4.8568	6.758.0 6.762.2 7.138.5	6.8862

Условия и энтальпия растворения системы Yb₁₄MnSb_{1-x}Te_x

При допинировании Yb₁₄MnSb₁₁ редкоземельными элементами, начиная с концентрации x=0.1 наблюдается заметное повышение величины энтальпии растворения твердых растворов во всех случаях, при составе x=0.5 обнаружено изменение в закономерности изменения энтальпии растворения, что подтверждает полученные изломы в других свойствах примерно при этом составе.

Таким образом, данные рентгеноструктурного и микрозондового методов о вхождении допинирующего редкоземельного элемента в кристаллическую решетку Yb₁₄MnSb₁₁ до состава X=0.45-0.5 подтвердили все исследованные свойства.

Для дальнейшего использования новых фаз Цинтля были исследованы электрофизические, магнитные, тепловые свойства для систем Yb_{14-x}Tm_x MnSb₁₁ и Yb₁₄MnSb_{11-x}Te_x. Измерения проводили в Химическом Департаменте Калифорнийского университета, Дэвис, США.

2.2.5 Электрофизические свойства

Электросопротивление для кристаллов, с частичной заменой иттербия тулием, было измерено для составов от х=0.05- 0.7. На рисунке 6 приведены данные для составов 0.05-0.4. Как видно из рисунка, все образцы имеют металлическую проводимость, причем при температуре перехода образцов с парамагнитного на ферромагнитное упорядочение наблюдается резкий скачок.

Рисунок 6- Зависимость электросопротивления Yb_{14-x}Tm_xMnSb₁₁ от температуры (1-x=0.05; 2- x=0.1; 3-x=0.2; 4-x=0.3; 5-x=0.4).

Сопротивление увеличивается при увеличении содержания тулия, максимальное сопротивление при x=0.3 и при 300 К. Образец x=0.4 демонстрирует более низкое сопротивление, чем другие составы. С целью дальнейшего исследования электросопротивления были измерены еще на двух кристаллах этого состава, которые подтвердили полученные данные.

Электрическое сопротивление для образцов немного увеличивается по сравнению с Yb₁₄MnSb₁₁.

Электрофизические свойства для Yb₁₄MnSb_{11-x}Te_x твердых растворов были измерены в широком температурном интервале (рис. 7).

Рисунок 7- Зависимость электросопротивления для кристаллов $Yb_{14}MnSb_{11-x}Te_x$ от температуры выше 300 К (1 - x=0; 2 - x=0.07; 3 - x= 0.16; 4 - x=0.19).

Изменение коэффициента Зеебека следует по тому же принципу, что и электрическое сопротивление. Три Те - допинированных образца $Yb_{14}Mn \ Sb_{11-x} \ Te_x \ (x=0.07, \ 0.16, \ 0.19)$ демонстрируют максимальное значение коэффициента Зеебека при приблизительно 1200 К, что является более низким, чем $Yb_{14}MnSb_{11}$ при 1275 К.

2.2.6. Магнитные свойства

Для образов с содержанием тулия 0≤0.50 были измерены магнитные свойства в широком интервале концентраций и температур (рисунок 8).

Температурная зависимость молярной восприимчивости для монокристаллов Yb₁₄MnSb_{11-x}Te_x (x=0.06: 0.14) приведена на рисунке 9.

Рисунок 8- Зависимость магнитной восприимчивости от температуры для Yb_{14-x}Tm_xMnSb₁₁ (x=0.4).

Рисунок 9- Зависимость молярной восприимчивости Yb₁₄MnSb_{11-x}Te_x от температуры.

2.2.7. Теплоэлектрические свойства

Эффективность термоэлектрических материалов, которые способствуют преобразованию тепловой энергии в электрическую, может быть представлена формулой: $zT = S^2T/\rho\kappa$, где S - коэффициент Зеебека, ρ -электрическое сопротивление и κ - теплопроводность. Все эти три параметра взаимосвязаны, и поэтому была измерена теплопроводность твердых растворов (рис. 10).

Рисунок 10- Зависимость теплопроводности Yb_{14-x}Tm_xMnSb₁₁ от температуры (1-x=0;2-x= 0.3; 3- x=0.5; 4-x=0.7).

Теплопроводность твердых растворов с тулием близка к теплопроводности Yb₁₄MnSb₁₁.

Рисунок 11- Зависимость коэффициента добротности zT Yb_{14-x}Tm_xMnSb₁₁ от температуры (1-x=0;2-x= 0.3; 3- x=0.5; 4-x=0.7).

Зависимость общей теплопроводности, к_т твердых растворов $Yb_{14}MnSb_{11-x}Te_x$ (x=0; 0.07; 0.16; 0.19) от температуры приведена на рисунке 12. На рисунке 13 приведена температурная зависимость коэффициента добротности твердых растворов $Yb_{14}MnSb_{11-x}Te_x$ Как видно из рисунка, все составы с теллуром показали увеличения показали zT.

Рисунок 12- Зависимость общей теплопроводности Yb₁₄MnSb_{11-x}Te_x от температуры (1-x=0; 2-x= 0.07; 3- x=0.16; 4-x=0.19).

Рисунок 13- Зависимость zT Yb₁₄MnSb_{11-x}Te_x от температуры (1-x=0; 2-x= 0.07; 3- x=0.16; 4-x=0.19).

Повышение zT составляет приблизительно на 20% от zT для $Yb_{14}MnSb_{11}$

выводы

1. Впервые получены 32 твердых растворов типа $Yb_{14-x}Ln_xMnSb_{11}$ (Ln-Tb, Dy, Ho, Er, Tm, Lu) и 5 типа $Yb_{14}MnSb_{11-x}Te_x$ флакс - методом. Показано, что твердые растворы, как и соединение $Yb_{14}MnSb_{11}$, относятся к фазам Цинтля и для их описания можно использовать формализм Цинтля.

2. Методом рентгеноструктурного анализа и микрозондовым методом установлено, что все синтезированные вещества имеют тетрагональную структуру типа $Ca_{14}AlSb_{11}$,и показано, что редкоземельные элементы максимально х=0.44-0.5 входят в кристаллическую структуру Yb₁₄MnSb₁₁, заменяя иттербий, и х≈0.12-0.22 теллура заменяет сурьму. Определены параметры решеток, рассчитаны рентгеновские плотности.

3. Впервые определены температуры плавления, коэффициенты термического расширения, температуры Дебая. Установлено, что полученные характеристики претерпевают излом при х≈0.5.

4. Методом термогравиметрии найдено, что окисление Yb₁₄MnSb₁₁ и твердых растворов подчиняется параболическому закону. Допинирование диспрозием, эрбием, тулием, лютецием и теллуром способствует уменьшению скорости окисления Yb₁₄MnSb₁₁.

5. Методом калориметрии растворения установлено, что при допинировании Yb₁₄MnSb₁₁ редкоземельными элементами (x=0.1) наблюдается заметное повышение энтальпии растворения. При составе x=0.5 наблюдается излом кривых энтальпий растворения образцов.

6. Впервые исследованы, температурные зависимости удельного электросопротивления, коэффициента Холла, термо-эдс, измерены магнитные свойства для твердых растворов $Yb_{14-x}Tm_xMnSb_{11}$ И Yb₁₄MnSb_{11-x}Te_x. По результатам исследования электрофизических свойств полученные вещества отнесены к полуметаллам или сильновырожденным полупроводникам; по магнитным свойствам являются ферромагнетиками. Эти исследования проведены в Калифорнийском университете, Дэвис, США

7. На основании полученных данных найдено, что $Yb_{14}MnSb_{11}$ допинированные РЗЭ и теллуром твердые растворы являются перспективными термоэлектрическими материалами, причем допинирование теллуром увеличило коэффициент добротности термоэлектрического материала на $\approx 20\%$ по сравнению zT Yb₁₄MnSb₁₁.

Основное содержание диссертации изложено в следующих публикациях:

- 1. Абдусалямова, М.Н. Изучение кинетики окисления Yb₁₄MnSb₁₁ и его твердых растворов Yb₁₄MnSb_{11-x}Te_x,/ М.Н. Абдусалямова, **Ф.А. Махму-** дов, Х.Кабгов, Б.Б.Эшов// ДАН РТ.- 2011. -Т.54.- №6. -С.481-484.
- 2. Абдусалямова, М.Н. Некоторые физико-химические свойства Yb₁₄MnSb₁₁ и его твердых растворов с теллуром типа Yb₁₄MnSb_{11-x}Te_x /

М.Н.Абдусалямова, Х.Кабгов, **Ф.А.Махмудов**// ДАН РТ.- 2011. -Т.54. - №11. -С.922-925.

- 3. Абдусалямова, М.Н. Некоторые физико-химические свойства Yb₁₄Mn Sb₁₁ и его твёрдых растворов с тербием типа Yb_{14-x}Tb_xMnSb₁₁/ М.Н. Абдусалямова, **Ф.А.Махмудов,** Х.Б.Кабгов // ДАН РТ.- 2012.- Т.55.- №12. -С.989-992.
- 4. Абдусалямова, М.Н. Закономерности в изменениях температуры плавления интерметаллидов систем лантаноиды – сурьма/ М.Н. Абдусалямова, **Ф.А.Махмудов**, А.Бадалов// Вестник ТТУ.- 2012. - №3 (19). -С.26-30.
- Абдусалямова, М.Н. Термодинамика процесса растворения сплавов системы антимонид – лантаноиды/ М.Н.Абдусалямова, Ф.А.Махмудов, А.Бадалов // Вестник ТТУ.- 2012.- №3 (19). - С.151-153.
- 6. Бадалов, А. Термические характеристики интерметаллидов систем сурьма-лантаноиды и сурьма-марганец-лантаноиды/А.Бадалов, М.А. Бадалова, М.Н.Абдусалямова, **Ф.А.Махмудов** // Известия Академии наук Республики Таджикистаню- 2014. №2(155).-С.54-57.
- Uvarov, Catherine A. The effect of Tm substitution on the thermoelectric performance of Yb₁₄MnSb₁₁/ A. Uvarov Catherine, M.Abdusalyamova, F.A.Makhmudov,Susan M. Kauzlarich//Science of Advance Materials.-2011.-V.3 .-P.652-658.
- 8. Yi, Tanghong. Magnetic and transport properties of Te doped Yb₁₄MnSb₁₁»/ Tanghong Yi, M. N. Abdusalyamova,**F.A.Makhmudov**,
- Susan M. Kauzlarich// Journal of Materials Chemistry.- 2012. -V.22.- P.14378-14384.
- Абдусалямова, М.Н. Теплота растворения твердых растворов Yb₁₄MnSb_{11-x}Te_x / М.Н. Абдусалямова, А. Бадалов. Ф.А.Махмудов // Материалы Девятой Международной теплофизической школы.-Душанбе.-2014.-С.321-324.
- 10. Абдусалямова, М.Н. Термическое расширение твердых растворов Yb_{14.} _xGd_xMnSb₁₁ / М.Н.Абдусалямова, **Ф.А.Махмудов,** С.А.Гадоев // Материалы Девятой Международной теплофизической школы.- Душанбе.-2014 -C.226-230.
- 11. Абдусалямова, М.Н. Some thermal properties of solid-solutions Zintl phase/ Абдусалямова М.Н., Васильева И.Г., Махмудов Ф.А.// Материалы 19 Международной Теплофизической конференции.- Пекин.-2010.- С.44-48.
- **12. Махмудов, Ф.А.** Structure and Magnetic properties of Yb_{14-x}Tb_xMnSb₁₁/ Махмудов Ф.А., Абдусалямова М.Н.,Каузлярич Сьюзан М.// Материалы 26 Международной конференции по редкоземельным элементам (РЗЭ)- Нью-Мексика,США.- 2011.- С.112.
- **13.** Абдусалямова, М.Н. Thermal stability of compounds Yb₁₄MnSb₁₁ and their solid solutions/ Абдусалямова М.Н., **Махмудов Ф.А.**, Каузлярич

Сьюзан М.// Материалы 19 Европейской Международной конференции по теплофизическим свойствам.- Салоники, Греция.-2011.- С.87.

14. Абдусалямова, М.Н. Kinetics of oxidation of Yb₁₄MnSb₁₁ and their solid solutions with ytterbium/ Абдусалямова М.Н., **Махмудов Ф.А**, Эшов Б.Б.// Материалы Международной конференции по химической термодинамике.- Рио-Джанейро, Бразилия.- 2012. -С.109.

Отпечатано в типографии ООО «Андалеб-Р». 734036, г. Душанбе, ул. Р. Набиева 218. E-mail: andaleb.r@mail.ru

Разрешено в печать 11.12.2015. Подписано в печать 14.12.2015. Формат 60х84 1 /16. Бумага офсетная. Гарнитура литературная. Печать офсетная. Усл. печ. л. 1,5. Тираж 100 экз. Заказ № 73